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A B S T R A C T   

Important recent advances in the cognitive neuroscience of language have been made using functional localizers 
to demarcate language-selective regions in individual brains. Although single-subject localizers offer insights that 
are unavailable in classic group analyses, they require additional scan time that imposes costs on investigators 
and participants. In particular, the unique practical challenges of scanning children and other special populations 
has led to less adoption of localizers for neuroimaging research with these theoretically and clinically important 
groups. Here, we examined how measurements of the spatial extent and functional response profiles of language 
regions are affected by the duration of an auditory language localizer. We compared how parametrically smaller 
amounts of data collected from one scanning session affected (i) consistency of group-level whole-brain par
cellations, (ii) functional selectivity of subject-level activation in individually defined functional regions of in
terest (fROIs), (iii) sensitivity and specificity of subject-level whole-brain and fROI activation, and (iv) test-retest 
reliability of subject-level whole-brain and fROI activation. For many of these metrics, the localizer duration 
could be reduced by 50-75% while preserving the stability and reliability of both the spatial extent and func
tional response profiles of language areas. These results indicate that, for most measures relevant to cognitive 
neuroimaging studies, the brain’s language network can be localized just as effectively with 3.5 min of scan time 
as it can with 12 min. Minimizing the time required to reliably localize the brain’s language network allows more 
effective localizer use in situations where each minute of scan time is particularly precious.   

1. Introduction 

A longstanding question in neuroscience is the extent to which 
cognitive faculties can be selectively attributed to distinct brain regions 
and vice-versa, with the left-hemisphere organization of language rep
resenting one of the earliest (Broca, 1861) and most widely studied 
(Hickok & Poeppel, 2007; Price, 2012) aspects of the functional orga
nization of the brain. One particularly effective neuroimaging approach 
to investigating functional neuroanatomy in individual subjects has 
been through the use of functional localizers (Saxe et al., 2006). The basic 
premise of a functional localizer is that functional regions of interest 
(fROIs) can be specified in the brains of individuals based on 
subject-specific patterns of response to a stimulus or task of interest. The 
response properties of those fROIs can then be investigated across other 
stimuli and tasks to determine their profiles of selective vs. shared re
sponses. Functional localizers have played an important role in under
standing the functional organization and selectivity of cortical regions 
that are responsible for numerous perceptual and cognitive domains, 

such as the perception of faces (Fox et al., 2009; Kanwisher et al., 1997), 
bodies (Downing et al., 2001; Ross et al., 2020), voices (Belin et al., 
2000; Pernet et al., 2015), and printed words (Cohen et al., 2002; 
Dehaene et al., 2002), as well as working memory (Somers et al., 2021) 
and core linguistic processing (Fedorenko et al., 2011; Fedorenko et al., 
2010). 

A unique contribution of functional localizers versus other analytical 
approaches is that researchers can define and examine regions of in
terest in the brains of individuals based on their patterns of functional 
response rather than their macroanatomical (e.g., gyral or sulcal) or 
stereotactic location. In this way, functional localization helps overcome 
the substantial variability in structure-function correspondence across 
individual brains (Brett et al., 2002), which is obfuscated by the tradi
tional group analyses that are based on strict stereotactic voxelwise 
correspondence across brains (Fedorenko, 2021). In particular, func
tional localizers offer an encouraging new avenue for understanding the 
functional architecture of the cortical language network, where tradi
tional group analyses have led to conflicting conclusions about the 
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functional specialization or selectivity of classic language areas 
(Fedorenko et al., 2011; Nieto-Castañón & Fedorenko, 2012). 

The most widely implemented functional language localizer involves 
an in-scanner task that contrasts brain activation elicited by reading 
meaningful sentences vs. sequences of pronounceable but meaningless 
nonwords in order to identify the brain regions sensitive to word- and 
sentence-level meaning (Fedorenko et al., 2010). This localizer contrast 
effectively dissociates brain areas that are selectively responsive to lin
guistic processing from those that are responsive to other tasks involving 
domain-general cognitive functions such as working memory and ex
ecutive control, which are situated in immediately adjacent frontal, 
temporal, and parietal cortices (Blank et al., 2014; Fedorenko et al., 
2012). For example, this language localizer has shed new light on 
classical conundrums such as whether language and thought are sub
served by distinct brain regions (Fedorenko & Varley, 2016), whether 
syntactic and semantic processing involve distinct brain regions 
(Fedorenko et al., 2020), and whether language comprehension recruits 
neural tissue that supports other domain-general cognitive faculties 
(Diachek et al., 2020; Mineroff et al., 2018). 

However, a task that involves reading printed words and pseudo
words is not ideal when considering many special populations, including 
young children who have not yet learned to read, children and adults 
who have difficulty with reading or with decoding nonwords (i.e., those 
with dyslexia; Gabrieli, 2009), and individuals who have difficulties 
with sustained attention to tasks. To address these limitations, an 
auditory version of the language localizer has been developed that 
contrasts participants’ neural activation while passively listening to 
brief recordings of meaningful speech vs. incomprehensible degraded 
speech (Scott et al., 2017). The spatial extent and functional response 
profiles of language regions identified by this auditory language local
izer are highly consistent with those obtained using the original reading 
task. However, while an auditory localizer resolves the extraneous lit
eracy and cognitive demands of its predecessor, its prescribed duration 
of nearly 13 min remains onerous in the context of neuroimaging 
research with pediatric and special populations. In these populations, 
achieving comfort and compliance with the in-scanner environment can 
be challenging (Fassbender et al., 2017; Greene et al., 2016), making 
every minute of active scan time especially precious (Meissner et al., 
2020). In addition to these practical challenges, there are substantial 
monetary costs involved in operating an MRI scanner. Such expense may 
lead researchers to squeeze their preferred experimental tasks into every 
available minute of scan time, rather than setting aside some of these 
valuable minutes for a localizer (Friston et al., 2006). Without a local
izer, researchers must look for group-level effects using unconstrained 
whole-brain or anatomical ROI-based analyses, in spite of the 
well-known inferential limitations of these techniques (Fedorenko, 
2021; Saxe et al., 2006). 

In the real-world conduct of neuroimaging research where the 
availability of scan time is practically and financially limited, the appeal 
of functional localizers varies inversely with the time needed to obtain 
these scans. Correspondingly, any improvement in localizer efficiency 
confers both economic and theoretical benefits to researchers: For a 
researcher planning to recruit 30 participants for a new fMRI study 
today, reducing a localizer’s scan time from 12 min to 4 min can save 
nearly $2500 in scanner operating expenses over the course of the study. 
This recovered value could instead be applied to obtaining additional, 
theoretically-motivated neuroimaging data from other tasks (Friston 
et al., 2006), scanning additional participants to improve statistical 
power (Mumford, 2012), or paying increasingly exorbitant open-access 
publishing fees (Manca et al., 2017). However, the utility of a functional 
localizer depends on its sensitivity, specificity, and reliability (Berman 
et al., 2010; Elliott et al., 2021), and given the inherent noisiness of the 
fMRI signal, collecting more data is perhaps the single most effective 
approach to improving within-subject reliability (Nee, 2019; Perra
chione & Ghosh, 2013). This is particularly relevant for functional 
localizers, which obviate many of the other sources of between-subjects 

variability in fMRI, particularly those due to spatial variability in 
functional neuroanatomy. Thus, optimizing the amount of scan time to 
devote to collecting a functional localizer reflects a complex balance of 
numerous scientific and practical demands. 

In this study, we sought to characterize how reducing the scan time 
of one widely-used auditory language localizer (Scott et al., 2017) af
fects its measurement of the spatial extent and functional response of 
language-related brain areas. We characterized changes in individual 
subjects’ activation measured from parametrically smaller amounts of 
data obtained during one scanning session (i.e., shorter localizer scan 
times). A limitation of this approach is that, in many cases, it precludes 
inferential statistical comparisons of samples of data that partially 
overlap. However, we chose to analyze increasingly shorter subsets of a 
single localizer stimulation paradigm, rather than compare several 
different localizer paradigms of different durations, because we believe 
this approach parallels how researchers carry out real-world design 
evaluation when they are weighing the opportunity costs of conducting 
longer vs. shorter in-scanner tasks. 

Specifically, we compared increasingly shorter amounts of data sub- 
selected from an original localizer acquisition vs. its full duration with 
respect to (i) the consistency of group-level whole-brain areal parcel
lations (Julian et al., 2012), (ii) the degree of language selectivity within 
single-subject fROIs (Fedorenko et al., 2011; 2012), (iii) the sensitivity 
and specificity of whole-brain activation and fROI location at the 
single-subject level (Nieto-Castañón & Fedorenko, 2012), and (iv) the 
test-retest reliability of subject-level whole-brain and fROI functional 
responses (Gorgolewski et al., 2013). We found that most of these 
measurements were extremely robust in the face of shorter localizer 
durations (i.e., the unbiased response selectivity of fROIs for linguistic 
stimuli, the low likelihood of finding false-positive activation, and the 
test-retest reliability of the spatial extent and response profile of sub
jects’ language-selective responses between runs), while other mea
surements were monotonically affected by localizer duration 
(principally, detection of all true-positive language-selective voxels). By 
characterizing the effects of localizer duration on the reliability and 
stability of language-selective response across the whole brain, we 
reveal the highly selective and highly reliable functional response pro
file of language regions measured in individual brains. We hope these 
findings are useful in guiding other researchers to make principled 
choices regarding the amount of functional language localizer scan time 
that is optimal to their unique research needs. 

2. Material and methods 

2.1. Participants 

Twenty-four adults (13 female, 11 male; age 19–32; M = 23.5 years) 
completed this study. All participants spoke fluent English and, by self- 
report, had no history of speech, language, hearing, or neurological 
disorder or any reading, cognitive, or motor developmental difficulties. 
All participants gave informed, written consent, and this study was 
approved and overseen by the Institutional Review Board at Boston 
University and the Committee on the Use of Humans as Experimental 
Subjects at the Massachusetts Institute of Technology. Participants 
received monetary compensation for their participation. 

2.2. In-scanner tasks 

Each participant performed two tasks as part of this study: a passive 
listening task to localize the language network (Scott et al., 2017) and a 
visual-spatial working memory task, which served as a non-linguistic 
control to examine the language selectivity of the regions identified by 
the auditory language localizer (Fedorenko et al. 2011). All participants 
who completed the language localizer and the working memory task 
also performed a number of additional tasks for separate studies, which 
are not considered here (Scott & Perrachione, 2019; Scott, 2020). 

J.J. Lee et al.                                                                                                                                                                                                                                    



NeuroImage 285 (2024) 120489

3

2.3. Language localizer 

Participants passively listened to engaging excerpts of natural speech 
from various long-form interviews and podcasts (e.g., TED Talks, The 
Moth Podcast) and acoustically degraded versions of similar excerpts in 
a blocked design (Scott et al., 2017). From each recording of natural 
speech (Fig. 1B), a corresponding degraded version was created (Fig. 1C) 
that effaced all phonological and linguistic content while preserving the 
intensity of time-varying acoustic stimulation (Stoppelman et al., 2013). 
Participants only heard either the intact or degraded version of any 
particular audio clip. Degraded speech stimuli were low-pass filtered 
copies of the intact stimuli (using a pass-band frequency cutoff of 500 
Hz) to which we added broadband white noise that had been multiplied 
by the amplitude envelope of the corresponding intact recording to 
produce matched time-varying fluctuations of acoustic intensity. The 
noise track was then low-pass filtered to ‘soften’ the highest frequencies 
using a pass-band frequency of 8,000 Hz and a stop frequency of 10,000 
Hz and added to the low-pass filtered copies of the clips to construct 
degraded versions of each intact speech recording. The experience of 
stimuli in the degraded speech condition is like listening to garbled, 
unintelligible radio transmissions. All materials for this spoken language 
localizer, including scripts and transcriptions of the speech excerpts, are 
available online.1 

One 18 s recording was presented per block of intact or degraded 
speech. The duration of the full language localizer was 12:18 (min:sec), 
with each of the two runs lasting 6:08 and consisting of 16 stimulus 

blocks (8 intact speech and 8 degraded) and 5 fixation blocks (14 s rest 
blocks in which participants heard no stimuli). 

2.4. Visual-spatial working memory 

We also wanted to determine whether and how the language- 
selective responses of brain areas identified by the localizer were 
affected by localizer duration. Extensive research has shown that the 
cortical networks for language and domain-general (multiple demand) 
cognitive tasks like spatial working memory appear to be strictly 
dissociated (Diachek et al., 2020; Mineroff et al., 2018). To this end, we 
also measured participants’ brain responses to a spatial working mem
ory task (derived from the classic Corsi block-tapping test). In this task, 
participants recognized sequences of dots presented one at a time in a 3 
× 3 grid (Scott, 2020) under two levels of visual-spatial working 
memory load. On each trial of the low-load (3-item sequences) and 
high-load (6-item sequences) conditions, participants were presented 
with two sequences of dots and asked to indicate whether the second 
sequence was identical to the first. Each dot in the first sequence was 
illuminated in red for 500 ms, followed by a 1.5 s retention interval 
presentation of the empty grid, and then each dot in the second sequence 
was illuminated in blue for 500 ms (Fig. 1D). Participants responded to 
this two-alternative forced choice task by button press when they saw 
the words “SAME OR DIFFERENT” presented on screen. The high > low 
working memory-load contrast is intended to identify regions that are 
responsive to increased demands on visual-spatial working memory, 
which activates the multiple demand (MD) network (Blank et al., 2014; 
Diachek et al., 2020; Mineroff et al., 2018). 

Condition order was counterbalanced across the two runs. Each 
condition included five blocks (4 trials per block) and five, 15 s blocks of 
rest. Each low-load block lasted 24 s and each high-load block lasted 36 
s. Each run lasted 6:18, and all participants completed two runs of this 
task. 

2.5. MRI data acquisition 

Structural and functional data were acquired on a whole-body 
Siemens Trio 3T scanner with a 32-channel head coil at the Athinoula 
A. Martinos Imaging Center at the McGovern Institute for Brain Research 
at MIT. Participants were situated in a head-first supine position in the 
scanner. Auditory stimuli were presented over Sensimetrics MRI- 
compatible Model S14 headphones and visual cues were presented 
over an in-scanner projector screen. High-resolution structural images, 
including a T1-weighted magnetization-prepared rapid gradient-echo 
(MPRAGE) anatomical volume (TR = 2530 ms, TE = [1.64, 3.50, 
5.36, 7.22 ms], TI = 1400 ms, flip angle = 7.0◦, voxel resolution = 1.0 
mm isotropic, FOV = 256 × 256, 176 sagittal slices) and a geometry- 
matched T2-weighted anatomical volume (TR = 3200 ms, TE = 454 
ms, voxel resolution = 1.0 mm isotropic, FOV = 256 × 256, 176 sagittal 
slices) were collected prior to functional imaging. 

Functional, blood oxygenation level dependent (BOLD) data were 
acquired using continuously-sampled, simultaneous multislice, T2*- 
weighted gradient-echo planar imaging (EPI) scans (TR = 750 ms, TE 
= 30 ms, flip angle = 90◦, voxel resolution = 3.0 mm isotropic, 10% slice 
gap, FOV = 72 × 72, 45 slices, 5 simultaneous slices). 484 volumes were 
acquired during each of the two runs of language localizer, and 504 
volumes during each of the two runs of the visual-spatial working 

Fig. 1. Language localizer and task design. (A) Each run of the localizer was 
subdivided into four spans of decreasing amounts of data (Run 1 is shown). The 
task consisted of passive listening during blocks of intact (Int) and degraded 
(Dg) speech, as well as resting baseline fixation (+). (B) A brief sample of the 
auditory stimuli from the Intact speech condition, showing the dynamics of the 
intensity envelope and spectrotemporal features (spectrogram) of the phrase, “I 
would say I’m a cat person,” comprising approximately 1.3 s of an 18 s intact 
speech block. (C) The corresponding stimulus from the Degraded speech con
dition, in which the speech stimulus was low-pass filtered and white noise was 
added with a temporally-modulated envelope matching that of the intact 
speech. (A participant heard either the intact or degraded version of a stimulus 
derived from a particular source recording, thereby preserving the total 
incomprehensibility of degraded speech stimuli.) (D) An example 3-item (low- 
load) visual-spatial working memory trial is shown; the correct response 
is “different.” 

Table 1 
Data analyzed (per run) for each subdivision of the localizer.  

Data analyzed Volumes Duration Blocks (per condition) 

100 % (full dataset) 484 6:03 16 (8/8) 
75 % 367 4:35 12 (6/6) 
50 % 252 3:09 8 (4/4) 
25 % 138 1:44 4 (2/2)  1 https://osf.io/qcdtb/ 
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memory task. 

2.6. MRI data analysis 

We subdivided each of the full 6:03- (16 block-) runs of the localizer 
into three additional functional series of parametrically decreasing 
duration (Fig. 1A; Table 1). These subdivisions comprised the first 75 % 
of the data from each run, the first 50 %, and the first 25 %. All sub
divisions of the dataset maintained the ratio of volumes acquired during 
the intact and degraded speech conditions, as well as the ratio of stim
ulation to baseline. Data subdivisions were created from each subject’s 
unpreprocessed nifti files. Functional preprocessing, within-subject 
modelling, and group analyses were subsequently performed for each 
duration of the localizer separately. (The visual-spatial working memory 
task data were not subdivided.) 

Functional MRI data were processed using the Lyman fMRI analysis 
ecosystem (Waskom, 2019), in which algorithms from FSL (v5.0.7; 
Jenkinson et al., 2012) and FreeSurfer (v5.3.0; Dale, Fischl, and Sereno, 
1999) are integrated using Nipype workflows (Gorgolewski et al., 2011). 

Image preprocessing consisted of motion correction within each run (i. 
e., rigid-body realignment to the mean EPI image) and spatial smoothing 
(6mm FWHM kernel) using the SUSAN algorithm implemented in FSL 
(Smith and Brady, 1997). Motion and intensity outliers (functional 
volumes exceeding 1 mm in differential motion or differing from the 
mean image intensity by > 3 SD) were identified and included as 
nuisance regressors during modeling (Siegel et al., 2014). Model design 
included two task regressors for the spoken language localizer (intact 
and degraded speech) or two task regressors for the spatial working 
memory task (high-load, 6-item and low-load, 3-item sequences), as well 
as nuisance regressors including six motion parameters and individual 
regressors for any outlier volumes. Vectors for task regressors were 
calculated by convolving a vector of event onsets with their durations 
and convolving the resulting stimulation time series with a canonical 
hemodynamic response function to generate the hypothesized blood 
oxygenation level dependent response. Several contrasts of interest were 
computed for each participant: intact > degraded speech for the language 
localizer, high > low load for the spatial working memory task, as well as 
each of these conditions > rest. Within-subject estimation of the general 

Fig. 2. Functional selectivity of language fROIs by localizer scan time. Glass brains (left column) show the location of the group-constrained parcellation based on (A) 
the full scan time from both runs of the localizer (16 blocks / condition and 12:06 total scan time), (B) the first 75 % of each localizer run (12 blocks / condition and 
9:10 total scan time), (C) the first 50% of each localizer run (8 blocks / condition and 6:18 total scan time), and (D) the first 25 % of each localizer run (4 blocks / 
condition and 3:28 total scan time). From within each parcel, subject-specific fROIs were obtained and used to independently sample the fMRI response magnitude 
from each condition of the language localizer and spatial working memory task. The mean response magnitude across participants’ fROIs within each parcel for (a) 
degraded vs. intact speech and (b) low vs. high working memory load is shown for each level of data subdivision. (Note that the y-axis limits differ, but the scales are 
the same, so magnitudes are comparable across the two tasks.) Parcellation was mostly robust to the amount of data, excepting the loss of some parcels (SFG, 
cerebellum) and more granular parcellation of left STG with smaller amounts of data. The pattern of selectivity across parcels was not affected by the amount of data. 
Parcels that were not attested for a particular localizer duration are marked “n/a.” 
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linear model and contrasts was conducted for each run in participants’ 
native EPI space. Spatial normalization was then completed via image 
registration from native EPI space into common MNI-space with 2 mm 
isotropic voxels. First, the coregistration transformation between each 
participant’s mean functional EPI volume and their T1-weighted struc
tural image was calculated using Freesurfer’s BBRegister program with 
FLIRT initialization (Greve and Fischl, 2009). Second, a nonlinear 
transformation was applied using ANTS v.1.9 (Avants et al., 2011) for 
accurate coregistration between the high-resolution structural anatomy 
and the MNI template. Individual subjects’ statistical maps were created 
after transformed contrast images were combined across runs in 
fixed-effects analyses, as well as for each run by itself (for test-retest 
analyses). 

2.7. Group-constrained subject-specific (GCSS) analysis 

To determine the consistency of the localizer in identifying the brain 
regions responsive to language, a parcellation of the probabilistic loca
tion of language-responsive regions across the brain was defined at each 
span of data length (25 %, 50 %, 75 % and 100 % of the data from each 
run) using the group-constrained subject-specific (GCSS) approach 
(Fedorenko et al., 2010; Julian et al., 2012). Individual subjects’ acti
vation maps for the relevant contrast of intact > degraded speech were 
thresholded at voxelwise p < 0.0001. The thresholded maps were 
binarized and summed across subjects in common stereotaxic (MNI) 
space to create a probabilistic overlap map, in which each voxel encodes 
the number of subjects who had significant activation at that voxel for 
the given contrast. After smoothing the probabilistic overlap map with a 
Gaussian kernel of 6 mm FWHM to ameliorate variation in functional 
neuroanatomy across subjects and thresholding at 2 subjects (zeros 
assigned to voxels with fewer than 2 subjects showing suprathreshold 
activation), the probability map was divided into partitions, called 
functional parcels, using a watershed image segmentation algorithm that 
follows the topographical information in the probability map to find 
spatial subregions of significant activation. The key language-sensitive 
parcels were determined by identifying the local maxima in the proba
bility map as the nucleus of each subregion and expanding the borders of 
each partition to all surrounding voxels until a local minimum between 
two subregions or a zero valued voxel was reached. We limited the scope 
of our analysis to parcels that contained significant activation from ≥ 80 
% of subjects (Fedorenko et al., 2010; Julian et al., 2012). 

We then obtained individual-subject functional regions of interest 
(fROIs) by intersecting each parcel from the group-level parcellation 
map with each individual’s activation map for the relevant contrast 
(intact > degraded), sorting the voxels based on their z-values, and 
selecting the top 10 % of voxels within each mask as that participant’s 
fROI. This approach ensures that each subject’s fROI in a particular re
gion contains the same number of voxels, simplifying statistical analyses 
performed across subjects (Nieto-Castañón & Fedorenko, 2012). For 

each subdivision of the localizer data, we defined fROIs based on com
bined activation from both runs of the data (for comparing how the 
spatial location of fROIs changes as a function of localizer duration), as 
well as separately for each run of the language localizer task (to allow for 
unbiased selection of voxels for testing language-selective responses (e. 
g., Kriegeskorte et al., 2009), and to measure how between-run tes
t-retest reliability of fROI location changed as a function of localizer 
duration). 

3. Results 

3.1. Parcellation of language regions and their functional selectivity 

Application of the GCSS procedure to the auditory language localizer 
produced a set of language-selective functional parcels that were 
consistent in location, number, and extent with those reported in pre
vious studies (Fedorenko et al., 2010; Nieto-Castañón & Fedorenko, 
2012; Scott et al., 2017). The parcellation based on the full-duration 
localizer identified ten parcels that met the inclusion criterion: six in 
the left hemisphere and four in the right hemisphere (Fig. 2A). These 
included the anterior and posterior portions of left superior temporal 
gyrus (lh.STG.a, lh.STG.p), left inferior frontal gyrus pars opercularis 
(lh.IFG.po) and pars triangularis (lh.FG.pt), left superior frontal gyrus 
(lh.SFG; which also extended into the right hemisphere), left precentral 
gyrus (lh.PreCG), the anterior, mid and posterior portions of right STG 
(rh.STG.a, rh.STG.m, rh.STG.p), and right cerebellum (rh.Cereb). We 
repeated the GCSS procedure separately for each subdivision of the 
dataset. The parcellation based on 75 % of the data was essentially 
identical to that of the full dataset (Fig. 2B). The parcellation based on 
the first 50 % of the data differed only in a more granular parcellation of 
left anterior STG, which now consisted of separate anterior (lh.STG.a) 
and medial (lh.STG.m) parcels (Fig. 2C). The parcellation based on the 
first 25 % of the data in each run was the most different: Parcels for SFG 
and cerebellum did not reach the inclusion threshold, and parcellation of 
left anterior STG was again more granular, now including an additional 
parcel specific to the temporal pole (lh.TP) (Fig. 2D). 

The more granular temporal lobe parcellations obtained from 
smaller amounts of within-subject data reflect greater heterogeneity of 
within-subject activation maps at the conservative voxelwise threshold 
(Supplementary Fig. 1A). This leads to lower likelihood of activation 
overlap across subjects and thus more local peaks in the group-level 
activation probability map from which parcels are grown (Supplemen
tary Fig. 1B). Applying more liberal voxelwise thresholds to the smaller 
amounts of within-subject data yields similarly less granular parcella
tions, and vice-versa for more conservative thresholds of larger amounts 
of within-subject data (Supplementary Fig. 2). 

The hallmark of a functional localizer is that it should identify neural 
tissue that is selectively responsive to a stimulus or cognitive operation 
of interest. To test whether the selectivity of the regions identified by the 

Table 2 
Functional selectivity of language regions (intact > degraded speech contrast) was unaffected by localizer duration.   

Run 1 (full) vs. Run 2 (shortened) Run 2 (full) vs. Run 1 (shortened) 

Effect Estimate (β) s.e. t p Estimate (β) s.e. t p 

100 % vs. 75 %         
Condition (intact > degraded) 43.80 2.40 18.25 ≪ 0.001 42.83 2.52 16.98 ≪ 0.001 
Duration (full > reduced) 6.86 2.40 2.86 < 0.005 -10.47 2.52 -4.15 ≪ 0.001 
Condition × Duration -1.94 2.40 -0.81 0.420 -0.44 2.52 -0.18 0.861 
100 % vs. 50 %         
Condition (intact > degraded) 45.65 2.53 18.03 ≪ 0.001 41.77 2.49 16.74 ≪ 0.001 
Duration (full > reduced) 12.17 2.59 4.70 ≪ 0.001 -4.81 2.55 -1.89 0.059 
Condition × Duration -3.79 2.53 -1.50 0.135 0.62 2.49 0.25 0.804 
100 % vs. 25 %         
Condition (intact > degraded) 42.24 2.99 14.14 ≪ 0.001 42.73 2.73 15.63 ≪ 0.001 
Duration (full > reduced) 1.18 3.32 0.36 0.721 -13.48 3.04 -4.43 ≪ 0.001 
Condition × Duration -0.38 2.99 -0.13 0.899 -0.34 2.73 -0.13 0.900  
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language localizer differed as a function of the amount of data used to 
define them, we defined individual fROIs in the parcels derived from 
each subdivision of the data and tested the responses (fMRI activation 
magnitude) in these fROIs to the contrasts of interest for language and 
visual-spatial working memory. These values were analyzed using linear 
mixed-effects models, with fMRI response magnitude as the dependent 
variable, categorical fixed factors of condition (intact vs. degraded 
(language) or high vs. low load (spatial working memory)) and localizer 
duration (full vs. either 75 %, 50 % or 25 %), and a random effects 
structure including by-subject and by-parcel intercepts. To meet the 
models’ assumption of independence, we ran a series of these compar
isons, testing in each whether the fMRI response magnitudes obtained 
using the full-length data from one run differed from those obtained 
using each shorter version of the other run, and vice versa. 

The selectivity of the fROIs obtained from each parcel for each 
localizer duration is shown in Fig. 2 (middle column), averaged across 
runs. Detailed comparisons of these data are presented in Table 2. In 
these models, the condition × duration interaction effect tests whether 
the selectivity of the language-network fROIs (effect of condition) was 

affected by the amount of data (effect of duration) used to obtain the 
response estimates. In all comparisons against the full-length localizer, 
the interaction effect was not significant. That is, even when localized 
using just 25 % of the data (1:44 per run), the neural responses to lan
guage vs. non-language stimuli in these fROIs were just as strong as 
when localized using 4x as much scan time. 

The duration term was also significant in many of these models, but 
the direction of this effect depended on which side of the contrast con
tained data from Run 1 vs. Run 2. Response magnitude estimates were 
greater for Run 1 than Run 2 (Supplementary Fig. 6); but because all 
subjects underwent these runs in the same order, these data cannot 
speak to whether this is a stimulus (e.g., speech content) or task (e.g., 
participant fatigue) effect. Nonetheless, comparing the two full runs 
against each other likewise showed no condition × run interaction, 
indicating both runs were equally effective at localizing language- 
selective voxels. 

In addition to being preferentially responsive to linguistic vs. 
nonlinguistic stimuli, functional response in the language network is 
known to be insensitive to the level of difficulty of nonlinguistic, 

Fig. 3. Whole-brain patterns of significant voxelwise activation with reduced localizer scan time. (A-C) The proportion of subjects for whom the activation measured 
in each voxel during the reduced versions of the localizer reflects true positive activation (probability that activation for a subject in a given voxel was significant in 
both the full-length localizer and the corresponding reduced-length localizer; left column); false negative activation (probability that activation for a subject in a given 
voxel was significant in the full-length localizer, but not the shorter version; middle column); and false positive activation (probability that activation for a subject in a 
given voxel was significant in the reduced-length localizer, but not the full-length version; right column). Increasing scan time led to more true positives (i.e., fewer 
false negatives), while false positives were overall very rare. (Individual subject maps were thresholded voxelwise at p < 0.0001 (uncorrected); glass brains show the 
maximum value across the collapsed dimension for each view.) (D) Increased scan time tended to improve the true positive rate uniformly across for all prorabilistic 
language areas. (E) The false positive rate was likewise very low across the entire brain, with only modestly more false positives found at the very shortest scan time. 
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domain-general cognitive tasks (Fedorenko et al., 2011). In the corre
sponding models testing neural response within subject-specific lan
guage fROIs to the visual-spatial working memory task (Table 3), we 
found no effect of condition, such that the response of language fROIs 
overall did not differ between high vs. low spatial working memory load. 
Critically, there was no condition × duration interaction for fROIs derived 
from any of the reduced durations vs. those based on the full dataset. 
That is, neural response in the language fROIs was not differentially 
modulated by the difficulty of the spatial working memory task, 
regardless of how much or how little of the localizer data had been used 
to define them (Fig. 2, right column). Even when localized using just 25 
% of the data, these language fROIs showed no additional modulation by 
a multiple-demand task (Fedorenko et al., 2010; Nieto-Castañón & 
Fedorenko, 2012; Saxe et al., 2006). 

Finally, we compared the spatial patterns and functional selectivity 
of the language-responsive regions identified by each of the localizer 
durations via classical whole-brain, group-level univariate analyses. We 
derived group-level fROIs from significant clusters of activation for each 
localizer duration formed through either cluster-level (Supplementary 
Fig. 3) or voxel-level (Supplementary Fig. 4) correction for multiple 
comparisons. In contrast to parcellations made using the GCSS analysis, 
patterns of activation defined by whole-brain univariate group-level 
contrasts were highly susceptible to effects of both localizer duration 
and statistical thresholding. Moreover, the functional response profiles 
of individuals’ language regions obtained from fROIs defined by group- 
level activation maps were significantly less selective for the intact >
degraded language contrast than those obtained using GCSS. 

3.2. Spatial consistency of language regions identified by shortened 
localizers 

As the amount of localizer data used to obtain the group-level par
cellation led to only modest differences in the regions identified, and it 

had no effect on the degree of task selectivity for individuals’ fROIs 
obtained from those parcellations, we next examined the extent to which 
the shortened versions of the localizer identified the same neural tissue 
as the full-length localizer within individuals. First, we compared indi
vidual subjects’ whole-brain activation maps obtained from the full 
localizer to those obtained from the three shorter versions. For each 
pairwise comparison (full vs. 75 %, full vs. 50 %, full vs. 25 %), we 
identified the voxels that were significantly activated in common be
tween the shorter and full localizer (i.e., true positives), the voxels that 
were active in the full localizer but not in the shortened one (i.e., false 
negatives or Type-II errors), and the voxels that were active in the shorter 
localizer but not the full dataset (i.e., false positives, or Type-I errors) 
(Fig. 3). Here it is important to emphasize that the operationalization of 
a “true positive” voxel is made only with respect to the functional 
activation elicited by the full-duration localizer, and not some other 
ground-truth knowledge of these voxels’ functional properties. 

The whole-brain true-positive rate was strongly affected by the 
amount of localizer data (Fig. 3A–C, left column). The mean whole-brain 
true-positive rate across subjects improved from 39.4 % for localizer 
runs of 1:44, to 62.2 % for runs of 3:09, and to 75.7 % for runs of 4:35. 
The mean whole-brain false-positive rate across subjects was overall 
very low (Fig. 3A–C, right column), and, in contrast to the true-positive 
rate, was largely unaffected by localizer duration. The false-positive rate 
declined from 2.93 % (1:44 runs) to 1.27 % (3:09 runs) to 0.98 % (4:35 
runs). When examining these effects separately by parcel (Fig. 3D and E) 
it is evident that changes in Type-I and Type-II error rates were realized 
similarly across the various language areas. 

Because the effects shown in Fig. 3 reflect voxels localized using the 
same voxelwise p-value threshold between full and shorter localizers, we 
were interested in whether relaxing the statistical threshold of the 
shorter localizers would lead to greater convergence in the voxels 
identified as significant in the intact > degraded contrast. To do so, we 
quantified the spatial overlap between voxels localized by the full and 

Fig. 4. Patterns of spatial convergence between the shortened localizers and the full dataset. (A) The extent of spatial overlap in whole-brain activation between the 
reduced localizers and the full dataset was quantified by the Jaccard index (JI) at various voxelwise thresholds (the mean value across participants is shown). (B) To 
help reify what the whole-brain JI values represent, here we show glass brains from a single representative subject depicting the extent of activation observed in 
either the reduced or the full localizer (union) compared to activation observed in both durations (intersection). (C) The spatial overlap (within participant) of the 
individually-defined fROIs obtained from each parcel at each reduced duration compared to those obtained from the full-length localizer. To facilitate comparison, 
the parcellation from the full localizer was used to define all fROIs. Bar plots show the mean across participants; error bars show ± SEM across participants. (D) As in 
C, coronal slices centered on the lh.IFG.po parcel depict the location of voxels in the fROI from one representative subject in either the reduced or full localizer 
(union) or common to both durations (intersection). Note the impressive degree of spatial overlap captured even by JI = 0.535. 
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reduced localizers across the whole brain using the Jaccard index (JI; 
Jaccard, 1908) statistic, which expresses the proportion of voxels 
identified in common between both localizers (the contrast maps’ 
intersection) with respect to the total voxels identified by either localizer 
(their union). This metric is widely used to assess spatial overlap in 
functional activation maps (e.g., Maitra, 2010; Rombouts et al., 1998), 
as it reflects the correspondence of two samples with respect to their 
spatial distribution, regardless of activation magnitude (e.g., Kampa 
et al., 2020). To test the effect of statistical thresholding on sensitivity 
and specificity, we parametrically varied the voxelwise threshold of 
each localizer map in six steps between p = 0.0001 and p = 0.05 and 
calculated the whole-brain JI values for each participant at each pair
wise combination of localizer thresholds. The pairwise comparisons of 
significant voxel overlap are illustrated in Fig. 4A. To help make the JI 
values more tangible, in Fig. 4B we show a single subject’s pairwise 
overlap maps for each localizer duration, with each input map thresh
olded at p < 0.001. 

If reducing the statistical threshold of the shortened localizer led to 
greater overlap with the full localizer, we would have expected to see 
greater JI values in off-diagonal cells in the upper triangle of the 
matrices (i.e., where the threshold of the shortened localizer was more 
liberal than in the full localizer). This pattern was not observed; instead, 
the greatest JI values were always seen along the matrix diagonal, 
suggesting that statistical thresholding did not penalize the shortened 
localizers’ true-positive voxels. Furthermore, the spatial overlap be
tween the voxels identified by the full localizer and either the 75 

%-duration or 50 %-duration localizers tended to be greatest at the most 
conservative thresholds (p = 0.001 and below), further suggesting that 
more liberal statistical thresholding does not improve localizer accu
racy. However, this pattern was reversed for the 25 %-duration localizer, 
which showed the greatest overlap with the full localizer at the most 
liberal p-values (p = 0.005 and above), which likely reflects the dramatic 
reduction in significant voxels found at the single-subject level for more 
conservative thresholds in the 25 % localizer (e.g., Supplementary 
Figs. 1A and 3). 

In assessing the utility of shortened localizers, it is not only important 
to gauge their consistency in identifying language-selective activation 
across the whole brain, but also the extent to which they converge on 
identifying the peak language-selective voxels for any given individual 
within each parcel across localizer durations. From the parcellation 
based on the full localizer duration (Fig. 2A), we quantified the spatial 
overlap in the subject-specific fROIs obtained within each parcel for 
each shortened localizer duration vs. the full dataset, examining how the 
fROI convergence within each parcel changed as a function of localizer 
duration. The voxels included in fROIs defined by reduced localizers 
showed increasing convergence on those identified by the full localizer 
as the localizer durations increased (Fig. 4C). This pattern of improved 
spatial convergence obtained similarly across all parcels. The improve
ment in spatial convergence for the fROI in one parcel is shown for a 
representative subject (Fig. 4D). 

Fig. 5. Test-retest reliability between runs as a function of localizer duration. (A) The quantified spatial overlap in whole-brain activation (intact > degraded speech, 
at various voxelwise thresholds) between Run 1 and Run 2 for the full and reduced localizers. (B) The similarity of activation patterns within each parcel and in the 
whole brain between Run 1 and Run 2, operationalized as the voxelwise correlation in contrast values (intact > degraded) between runs. (C) The quantified spatial 
overlap (within participants) in the location of the fROIs for each parcel defined using the data from Run 1 vs. Run 2 for the full and reduced localizers. Some parcels 
were not found for some localizer durations (see Fig. 2), as indicated here with “∅”. For all plots, the mean across participants is shown; error bars show ± SEM across 
participants. 
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3.3. Test-retest reliability of language regions identified by shortened 
localizers 

In most cases, researchers will want to obtain two separate runs of a 
functional localizer, in order to identify fROIs and test hypotheses about 
their functional response profiles in independent data (Julian et al., 
2012). We therefore tested the extent to which the identification of 
language-selective voxels (both across the whole brain, and also for the 
fROIs within each parcel) were reliable across two separate runs of each 
localizer duration. Across the whole brain, language-selective voxels 
were identified based on the intact > degraded contrast at voxelwise 
thresholds that varied in six steps from p = 0.05 to p = 0.0001, and the 
spatial convergence in activation between runs was quantified using the 
Jaccard index. Larger JI values indicate more overlap and thus more 
reliable whole-brain activation between runs. 

The between-run test-retest reliability of whole-brain activation 
improved dramatically as the localizer duration increased from 1:44 to 
3:09 (Fig. 5A). Whole-brain test-retest reliability improved more subtly 
as localizer duration increased from 3:09 to 4:35, while increasing scan 
time to 6:03 appeared to offer no additional improvement. For longer 
localizer durations, whole-brain test-retest reliability was not affected 
by the voxelwise p-value threshold. However, between-run activation 
became less reliable with more conservative thresholds for the shortest 
runs of 1:44. 

In the GCSS technique, selecting the fROI for a parcel depends on the 
pattern of activation within that parcel, with the voxels that show the 
greatest difference in the target contrast (intact > degraded) comprising 
the fROI. To ascertain how the pattern of voxel activation magnitudes 
between runs varied as a function of localizer duration, for each subject 
we calculated the pairwise correlation across all voxels within each 
parcel between Run 1 and Run 2 of each duration of the localizer. Larger 
correlation coefficients indicate more similar patterns of activation be
tween runs, and thus greater test-retest reliability of the activation 
within a parcel. 

The between-run (test-retest) reliability of the activation pattern 
within each parcel improved as localizer run duration increased from 
1:44 to 3:09, but the activation patterns did not become any more 
consistent with longer runs (Fig. 5B). This pattern appeared consistently 
across all parcels. However, activation in some parcels tended to have 
overall more reliable activation patterns (e.g., lh.IFG.po, lh.STG.a, lh. 
STG.p, and rh.STG.m) than did others (lh.PreCG, lh.SFG, and rh.Cereb). 
These variations in the pattern of activation from run to run unsur
prisingly led to slight variations in group-level parcellations when 
obtaining these parcellations from only one run at a time (Supplemen
tary Fig. 5), consistent with the observation of more granular parcella
tions with smaller amounts of within-subject data (Fig. 2). 

Finally, we investigated whether the between-run likelihood of 
selecting particular voxels to comprise the fROI changed as a function of 
localizer duration. For each localizer duration, within each parcel, the 
spatial convergence in voxels selected for each subject’s fROI was 
quantified using the Jaccard index. Larger JI values indicate more 
overlap and thus more reliable fROI sampling between runs. The 
between-run reliability of fROI selection was not affected by localizer 
duration (Fig. 5C) – a pattern observed consistently across all parcels. 
However, the location of fROIs had greater overall test-retest reliability 
in some regions (e.g., lh.STG) compared to others (e.g., lh.SFG and rh. 
Cereb). Notwithstanding any differences in the spatial location of the 
fROIs between runs, there were no between-run differences in their 
selectivity for either the intact vs. degraded speech contrast (Supple
mentary Fig. 6) or insensitivity to the hard vs. easy spatial working 
memory contrast (Supplementary Fig. 7). 

4. Discussion 

This study examined how measurement of the spatial extent and 
functional selectivity of language-responsive brain areas was affected by 

the amount of fMRI scan time devoted to an auditory language localizer. 
In particular, we wanted to quantify the extent to which shorter versions 
of the localizer affected (i) the consistency of group-level, whole-brain 
parcellations of the language network; (ii) the degree of language 
selectivity within fROIs defined in individual subjects; (iii) the spatial 
consistency of language regions at the single-subject level both across 
the whole brain and for individually-identified fROIs; and (iv) the test- 
retest reliability of within-subject fMRI activation across separate runs. 

While each of these metrics showed nuanced patterns of differences 
as a function of the amount of data, two major themes were observed: 
First, the brain regions identified by the localizer maintained a consis
tently high degree of functional selectivity for language stimuli 
regardless of how much (or how little) scan time was used to localize 
them. Second, the localizer duration could be reduced by up to 50% 
while having only minimal impact on essentially every metric of spatial 
accuracy relative to the full-duration localizer and test-retest reliability 
between runs. 

4.1. Group-level parcellation consistency 

The probabilistic parcellation of language areas at the group level 
was minimally affected by the duration of the localizer. The parcella
tions based on 75 % and the full duration localizer were effectively 
identical, and that based on 50 % differed only in more granular par
cellation of left anterior temporal lobe. In the parcellation based on 25 % 
of the localizer duration, left temporal parcellation was even more 
granular, and two extrasylvian language parcels were not identified: 
SFG and right cerebellum. 

The loss of SFG and cerebellar parcels with diminishing scan time 
was related to the threshold for inclusion in the parcellation: Compared 
to the a priori inclusion criterion of 80 %, significant activation was 
found for only 18/24 participants (75 %) in SFG and 16/24 (67 %) in 
right cerebellum when analyzing the shortest localizer duration. 
Reducing the parcel inclusion criterion to 67 % would have preserved 
these two parcels without adding any new ones not identified by the 
longer durations. It is worth noting that the criterion for parcel inclusion 
is not absolute, being one of the many discretionary thresholds that 
researchers must set when carrying out fMRI, including GCSS, analyses 
(Kawabata Duncan & Devlin, 2011). 

Meanwhile, more granular parcellation of anterior left temporal lobe 
with shorter localizers may actually reflect false negatives identifying 
parcel boundaries based on larger amounts of data. Original studies 
using GCSS-based parcellation of the language network also reported 
four parcels in left temporal lobe (Fedorenko et al., 2010). It is likely that 
the present paradigm was more effective at measuring language acti
vation in this part of the brain, owing to the use of auditory stimulation 
and a shorter TR (i.e., more within-subject samples; Nee, 2019) than 
these earlier reports, leading to better within-subject detection of 
language-selective cortex in anterior temporal lobe. Setting even more 
conservative thresholds for within-subject activation may lead to simi
larly granular temporal lobe parcellations when using longer scan du
rations, and more liberal thresholds for shorter scan durations may both 
reduce granularity and increase the inclusion of other marginally 
representative parcels. 

Ultimately, questions about the quality of parcellations obtained 
using only a small amount of within-subject data may be moot given the 
availability of open-source parcellations based on large numbers of 
subjects (e.g., Lipkin et al., 2022). If a study’s goal is to test the 
responsiveness of individual-subject fROIs within the language network, 
such an analysis does not require defining parcels using one’s own data. 
Indeed, the definition of a parcel in a GCSS analysis is a region where 
activation is likely to be found within a population. In this way, using an 
a priori parcellation can allow the unbiased selection of language fROIs 
in small-N and case-study fMRI experiments that would otherwise be 
underpowered to obtain group-level parcellations from their own data. 
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4.2. Language selectivity of individual fROIs 

Perhaps the most important observation from these data is that 
specialization for linguistic processing remained consistent across the 
language network regardless of the amount of scan time. Using an un
biased approach to independently select and test the response profiles of 
subject-specific fROIs in the language network, we found a strikingly 
consistent pattern of selectivity for intact vs. degraded speech and 
insensitivity to high vs. low spatial working memory load. Even when 
language and working memory response selectivity was measured based 
on only 1:44 of scan time, all nodes of the language network showed 
equivalent response profiles as when measured using more than three 
times as much data. 

These results demonstrate that robustly language-selective fROIs can 
be identified in the brains of individuals with less than two minutes of 
scan time. Because identification of these fROIs can be achieved so 
expediently, this leaves substantially more scan time available to re
searchers for collecting data on other, hypothesis-driven questions about 
the response properties of the language network, while gaining access to 
all of the theoretical and statistical advantages that subject-specific 
fROIs offer over traditional group analyses (Saxe et al., 2006; Fedor
enko, 2021). 

4.3. Spatial consistency of language regions in individual subjects 

While the conservatively defined fROIs remained equally language- 
selective, analyzing smaller amounts of data also always led to fewer 
true positive voxels (vs. the full duration localizer) across the entire 
brain. This reduction was not linear, with greater reductions in true 
positive voxel identification when shortening the localizer from 100 % 
to 75 % and from 50 % to 25 %, with a much more modest effect be
tween the 75 and 50 % durations. False negatives were equally likely 
across frontal, temporal, and extrasylvian areas, such that no language 
regions were more or less affected when scan time was reduced. 
Importantly, the whole-brain false positive rate was always very low and 
was unaffected by localizer duration, indicating that even the shortest 
localizer is unlikely to risk introduction of theoretically spurious 
measurements. 

One might have imagined that setting liberal within-subject voxel 
thresholds for shorter-duration localizers would have yielded whole- 
brain maps that were more similar to conservative thresholds at 
longer durations. However, this turned out not to be the case. The 
within-subject consistency in whole-brain language maps tended to be 
greatest between localizer durations when the voxelwise threshold was 
(i) the same for both durations, and (ii) more conservative (i.e., p <
0.001 and smaller). This counterintuitive result suggests that maximally 
language-responsive areas are identified with high reliability regardless 
of paradigm duration, but that there is more variable detection of pe
ripheral activations in all cases. This finding parallels the observation 
above that the fROIs (i.e., the most selective voxels) are always highly 
language selective regardless of localizer duration. 

4.4. Within-subject test-retest reliability 

While the primary purpose of a localizer is to define fROIs to be 
applied to additional, hypothesis-driven contrasts, validating the effec
tiveness of a localizer nonetheless requires independent training (fROI- 
defining) and testing (response-measuring) data. Often this is achieved 
through measuring two runs using different stimuli. Measuring the 
within-subject test-retest reliability of the localizer across runs revealed 
a number of interesting observations: First, the degree of between-run 
overlap in language-selective voxels across the whole brain was essen
tially the same regardless of localizer duration and voxelwise threshold 
in all cases except when analyzing the shortest (25 %) duration localizer. 
The between-run activation pattern (i.e., relative response magnitude 
per voxel) within language parcels was also essentially the same for all 

localizer durations except the shortest. Furthermore, the degree of 
spatial overlap for fROIs defined on each run of data was unaffected by 
localizer duration. These results suggest that, for a given amount of scan 
time, the map of language selective voxels produced by the intact >
degraded speech contrast is highly reliable within an individual subject. 
While there was more overall test-retest variability in this map across 
the whole brain at the shortest scan time, the areas of peak activation (i. 
e., those selected for fROIs) were nonetheless equally reliable vs. longer 
scanning durations. These results further reveal the robustness of even 
very short versions of the localizer for selecting valid and reliable 
language-selective fROIs within individual subjects. 

4.5. Recommendations for practice 

Heuristically, more data are always better. But the acquisition of 
neuroimaging data is costly in terms of both monetary expense and 
human time and effort. Pragmatic and economic considerations neces
sarily impose trade-offs on how much data can be collected during any 
particular fMRI session or task. For instance, while longer localizers may 
lead to more accurate localization in ideal situations, they also increase 
the likelihood of participant noncompliance when working with chil
dren and other special populations, which could vitiate the localizer 
entirely. How, then, can researchers use these results to guide them in 
adding language localizers to their own fMRI studies? 

Perhaps the most important consideration in selecting the amount of 
localizer scan time is the purpose for localizing language-selective re
gions. One common use for functional language localizers has been to 
examine whether activity in the core language network is dissociable 
from other mental operations (e.g., Blank et al., 2014; Mineroff et al., 
2018) and whether various linguistic operations can be differentially 
associated individual fROIs (Fedorenko et al., 2015; Siegelman et al., 
2019). If the goal is to characterize the functional signature of nodes of 
the brain’s language network, then the present data suggest that local
izer scan time can in fact be drastically reduced. A single run of 1:44 
yields language-selective fROIs that appear to be just as selective for 
language and insensitive to domain-general cognitive tasks as those 
obtained after two runs totaling 12:06. These fROIs can be selected from 
parcels defined on large, independent samples (Lipkin et al., 2022), 
further reducing concerns about not collecting either enough within- or 
between-subjects data in any one study to define a set of 
group-constrained parcels. If researchers do want to construct a par
cellation based on their own sample – for instance, if testing hypotheses 
about differences in language network organization between groups or 
ages (Hiersche et al., 2022; Lee, 2022) – then the shortest localizer may 
not be appropriate. From the present data, whole-brain language acti
vation maps were most reliable with localizer durations of 50% (two 
runs of 3:09) or more. 

However, if the localizer is intended to comprehensively demarcate 
language-selective cortex (i.e., to minimize the spatial extent of false 
negatives), then it is instead advisable to obtain as much data as 
possible. For instance, there is hope that fMRI can one day serve the 
needs of presurgical mapping (e.g., Diachek et al., 2022; Wilson et al., 
2017), where minimization of false negatives is paramount. In such 
cases, shorter localizers may be convenient but risk greater human cost. 
Current research on the language network has not identified the 
necessary vs. sufficient relationship between the degree of language 
response and functional language outcomes after injury or surgery. The 
present study did not attempt to identify an upper bound on the amount 
of scan time after which no further gains in language mapping were 
observed, but that number likely exceeds the longest measurements we 
employed. 

Finally, we should recall that the present observations are based on 
comparisons of data obtained from a single localizer paradigm. This 
raises two important caveats regarding interpretation and generaliza
tion of these conclusions: First, inferential statistical comparisons as
sume independence of measurement errors, which is violated when 
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comparing partially overlapping samples. This can underestimate true 
error and overestimate significance of nonindependent effects (e.g., 
differences between measurements obtained from the reduced vs. full 
localizer). In some cases, we have been able to maintain independence 
by comparing strictly nonoverlapping samples from two separate runs 
(as in Section 3.1). In other cases, we have eschewed inferential statis
tical tests when the relevant comparisons can be made qualitatively and 
the descriptive statistics speak for themselves (as in Sections 3.2 and 
3.3). We opted for this design because it better reflects how researchers 
actually evaluate design considerations when planning new neuro
imaging experiments: Assuming participants will all undergo the same 
imaging paradigm, how much data does an experiment need to collect? 
Second, and relatedly, we cannot claim that every stimulation paradigm 
can effectively localize the language network in under two minutes, only 
that it is possible both in principle and when using this paradigm (Scott 
et al., 2017). Researchers planning new paradigms will want to ensure 
the effectiveness of their stimuli and task, and we hope this manuscript 
provides a framework for doing so. 

5. Conclusions 

Using a localizer to demarcate language-selective fROIs in individual 
brains offers considerable theoretical advantages for investigating the 
functional organization of the language network. Here, we found that 
core nodes of the language network exhibited highly language-selective 
responses even when localized using as little as 1:44 of scan time. The 
spatial extent of these regions at the group level, and the locations of 
subject-specific activation peaks, could be reliably identified using 
localizer runs of three to four minutes each. These results demonstrate 
the high degree of focal selectivity of the cortical language network. 
Correspondingly, they demonstrate that, for many cognitive neurosci
ence applications, a functional localization of individual subjects’ 
language-selective areas can be effectively implemented with much less 
scan time and much less cost than in most prior studies. These findings 
create new opportunities to use a functional language localizer to study 
the neural organization of language in special populations. 
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